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Note 

Smooth Perturbations of the Schrijdinger Equation Related to the 
Charmonium Models 

1. INTRODUCTION 

In recent years many publications have appeared where the masses of some elemen- 
tary particles have been introduced through the bound states of a Schradinger type 
equation. This approach has been especially developed in the case of the $-particles 
or charmoniums [5, 61 which were discovered in the experiments with electron- 
positron annihilation and were interpreted as bound states of a charm-anticharm 
quark pair. Different types of model potentials have been used but the general feature 
of all these potentials is that in the case of s-states they behave linearly in the vicinity 
of the origin. 

In this article we try to answer the following question. If the potential is a smooth 
perturbation of a linear potential, what is the perturbation series for the energy? 
More strictly speaking we assume that in the vicinity of the origin the potential 
V(r) can be expanded in a Taylor series of the form 

V(r) = cr + l 2r2 + l 2v,9 + . . . . (1) 

where E < 1 and the other coefficients c, u2, v are of the order of magnitude of unity 3 
so that subsequent terms of the series (1) are of less importance than the previous 
ones. One gets the answer in the form 

E, = &f')(c) + rE;)(c, u2) + c2E;)(c, v2, VJ ... (2) 

The introduction of the parameter E can be considered as an artificial way to obtain 
the final result so the actual validity of the expansion (2) depends upon how succeeding 
terms decrease. 

Of course more complicated perturbations can be treated, e.g., the perturbations 
that lead to the loss of quarks confinement [9, lo]. In order to estimate their contribu- 
tion other techniques than presented here are needed. 

The final results can be obtained with the help of the well-known Schrijdinger 
perturbation theory using the known matrix elements [4] but we shall present here a 
more efficient method proposed by one of the authors (S. Yu. Slavyanov [ll]). 
The advantage of this method is that it can be easily programmed with the help of 
algebraic computing systems (ACS for short). We have used for our computations 
two ACS: SYMBAL [3] and REDUCE [8]. 
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The article by Barton and Fitch [2] can be recommended as a good introduction 
to the use of algebraic computing in theoretical physics. 

2. OBTAINING THE EXPANSION FOR ENERGY 

We shall start with the following equation (cf. [6]) for the radial part u(r) (Y(r) = 
Y&a, v) . u(r)/r) of the wave function Y(r) for s-states 

d’(r) + m[E - qr, E)]U@) = 0 (3) 

and the boundary conditions 

W)lr=o = 0, u(r) + 0 
r+ 03. (4) 

Here m is the mass of the charmed quark and the potential V(r, C) is represented by 
(1) in the vicinity of the origin and increases to infinity provided the confinement of 
quarks is fulfilled. The charmonium masses spectrum in the nonrelativistic limit is 

After introducing a new scale x = ET, a new “large” parameter v = m1W/3e-1 
(v > 1) and a new energy X = m1k-2/3E, Eq. (3) can be rewritten in the form 

where 
u”(x) + [v2X - v”u(x)]u(x) = 0, (6) 

u(x) = x + u,/cx” + u,/cx” f . . . . 

According to the modification of the comparison equation method proposed by one 
of the authors [l l] we take the solutions u(x) to be of the form 

u,(x) = [z’(x, v)]--1i2 Ai(v . z(x, v) - pn). (7) 

Here Ai is one of the standard Airy functions and pn are of subsequent absolute 
values of roots of Ai (p. = 2.3381, p1 = 4.0879, p2 = 5.5210, p3 = 6.7867. . ..). In 
other wordsp, are the eigenvalues of the Schriidjnger equation with a linear potential. 
Substituting the solution (7) into Eq. (6) one gets the following equation for the 
function z(x, V) which determines the nonlinear transformation of scale 

z’2(z - u(x)) - (l/v)(z’2/L, - h,) - (l/v3){z, x} = 0, (8) 

where {z, x} denotes the schwarzian derivative 

(z, x} = 5 - ; g,“. 
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From the boundary condition (4) it follows that 

z(x, V)i@O = o,, (10) 

and Eq. (8) and condition (10) together give the expression for the eigenvalue h, 

which means actually that the values of energy are determined by the Taylor expansion 
of the function z(x) in the vicinity of the origin. 

Now we shall expand the function z(x, V) in the series 

z(x, v) = 2 zk(xj v-k 
k=O 

(12) 

and the eigenvalues h, in the series 

A, = f Ayv-k. (13) 
k=O 

If we substitute expansions (12) and (13) into Eq. (8) and equate the subsequent 
negative powers of v we get a system of linear equations for the coefficients z&z) that 
together with the initial condition (10) give the following expressions for zi(x) 

zo(x) = [; jy [u(x)]“” dxy, 

$2 

5 

44 = Jo pz; h(O) 

- 

0 2[v(x)]1/2 dx, 

zn(x> = $ j-' &,~,a 
0 0 

p 1:; ZtZh-k--l - X(n-1) 

(14) 

n-l n-1 n-k 

+ Z; 1 dcz,-k + c & c z;z,-k-i + ; {z, &-31 dx, 
k=l k=l i=O 

where by (z, x}k we denote the coefficients by v-~ after substituting the expansion (12) 
into the Schwarzian derivative (9). In order to obtain N terms in expansion (13) it is 
not necessary to have the exact expressions for all Zi(X) but we have to obtain N + 1 
terms in the Taylor expansion for zo(x), N terms for zl(x) and so on. Therefore the 
procedure reduces to handling truncated power series. It has been programmed in 
SYMBAL and took approximately half a minute of computing time on a CDC 6400 
to obtain the final expression for energy but the computations took a large amount of 
memory (about 120 k-words). 
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The more straightforward way for doing the calculations is to take the function 
z(x, V) to be of the form 

N+Z-k 

z(x, v) = 5 v-k c akiXi, (1% 
k=O i=l 

then substitute expansions (15) and (13) into eq. (8) and equate both the powers of v 
and x. The second approach was programmed in REDUCE and took about 7 min 
of computing time on DEC 10 and a large amount of memory as well. Both methods 
gave the same answer which gives confidence in the accuracy of the result. 

Here we give the obtained expansion for energy E in terms of the initial parameters 

E I 8 
= CWn-~l3 p,, + E - p,, 2% 

n 15 c 

+ E3 km4 128 (315 v‘j 1088 22912 
c 

- ___- v2v3 + -- vz3 
1575 c2 70875 c3 

+ ~-- v22v3 
2507264 41575168 

v24 1819125 c3 8 1860625 c4 1 

536512 v2~v3 
+ 72765 c3 

942752 v24 -___ - - -) + 0(8)1. 363825 c4 (16) 

In order to make it easier to estimate the terms we give here also the approximate 
expression to five decimal places 

E,, = c2/3m-1/3(p,, + epn2 . 0.5333%,/c 
+ l ~[tL,~(O.45714v,/c - 0.27429~,~/c~) 
+ (0.42857v3/c - 0.25714~,~/c~)] + ~~[tL,~(O.40635v,/c 
- 0.69079v2v3/c2 + 0.32327~,~/c~) + ~,,(1.26984v,/c 
- 1.89206v2v3/c2 + 0.84825~,~/c~)] + ~~[tL~~(O.36941v,/c 
- 0.80777v2v4/c2 - 0.42904~,~/c~ + 1.37828~,~v,/c~ 
- 0.50788~,~/~3 + /.~,,~(2.60894v,/c - 4.85157Vg.dC2 

- 2,39OlO~,~/c~ + 7.37322~,~v,/c~ - 2.59122vS4/c4)] 
+ O(41. (17) 
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From formula (17) one can observe that the obtained expansion is generally valid 
for calculations when EP,, < a, but of course this depends also upon 
the coefficients c, v2 , v3 , v4 , and vg . 

3. SOME EXAMPLES AND SPECULATIONS 

As an example for doing a calculation with expansion (16) we take the potential 

which appeared as a solution of Einstein-Maxwell equations in relativity theory [7]. 
Here c = v, = v, = 1, v2 = vq = - 1, and we get for the energy 

Em = c2f3 [ p,, - E ; pq,2 + e2 ($ p,3 + 2) 

+ es (gig t&z4 + g A) 
245312 

+ e4 (81860625 pn6 + 
54308 

363825 pn2 ) + OG5)] 

It is well known that the first-order perturbation approximation for the energy is 
given by the matrix elements. The formula (16) therefore gives one the opportunity to 
obtain the matrix elements of powers of r for the linear potential 

es> = 256 has + 1808 693 693 pn2* 

(20) 

This corresponds to the results of previous authors [4]. 
Our calculations also give the possibility of obtaining another important quantity 

which is essential for determining the lifetime of the quark-antiquark pairs [l]. 
According to representation (7) one can rewrite this quantity as 

D= 
1 M2(-p.,)/2 * z’(0, v) 

J,” Ai2(--p., + z)(x’(z, v))” dz ’ (22) 
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where x(z, V) is the inverse function of z(x, v). Using the well-known relation 

AP(-p,) 
J,” Ai2(-p, + x) dx = l 

and also the derived matrix elements (20) one can finally get 

D = 1 + ; E/L% : + Gp,,2 (; % - g up,,,,) + O(E3). (24) 

As yet we have not tried to compare the above theoretical results with experimental 
data because of the paucity of the latter. But a comparison should be possible as more 
data become available. 
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